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ABSTRACT 

Ralstonia solanacearum is responsible for bacterial wilt epidemics in a wide range of 

cultivated crops including solanaceae, bananas, and geraniums among others. The 

pathogen has the ability to thrive in wide temperature ranges enabling a wide 

geographical distribution but tends to be aggressive in warm and humid regions. 

Climatic conditions in Sub-saharan Africa are optimal for the pathogen 

multiplication. R. solanacearum is capable of surviving for long periods in soil, crop 

residues and irrigation water owing to its great metabolic adaptability. Indigenous 

vegetables form an important component in people’s diets. African nightshades are 

solanaceous crops and are among the most popular indigenous vegetables. Their 

production is threatened by the devastating bacterial wilt pathogen R. solanacearum. 

Nightshades are important in food security and are a rich source of vitamins, 

micronutrients and roughage. Initially the vegetable was consumed by the rural poor 

but its popularity has risen due to its multiple health benefits. They also possess 

phytochemicals such as antioxidants, one of the body’s defense compound against 

diseases. African nightshades are vital in curbing hidden hunger especially among 

vulnerable communities. A survey was done in selected areas in Kenya to determine 

the current status of the pathogen in African Nightshade farms. R. solanacearum 

affecting African nightshades was confirmed in various parts Western, Central and 

Rift valley regions. Several management options have been used including use of 

chemicals as fumigants and amendments, solarization, biological control with the 

aim of reducing the population. However, no single control method has been 

completely successful. The aim of this paper is to give insights to the current status of 

bacterial wilt and the current management options against bacterial wilt in African 

Nightshades in Kenya.  
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INTRODUCTION  

R. solanacearum occurrence and host range 

Bacterial wilt caused by R. solanacearum has a wide host range occurring in tropical and 

subtropical environments (Agrios, 2005).  The first occurrence of R. solanacearum in potato 

was reported in Japan. R. solanacearum is classified into races, biovars in reference to the 

geographical distribution (Champoiseau et al., 2010). Biovar 1 occuring in USA, 3 in Asia, 2 

and 5 occur in Australia and China while 4 occurs in India. In Africa, (Figure 1) bacterial wilt 

disease was reported in many countries (EPPO, 2014).  It is distributed globally and in the 

absence of a susceptible host, alternative hosts or non-host plants enable survival of the 

pathogen (Granada and Sequeira, 1983; Hayward, 1991; Genin and Denny, 2012). The 

bacteria has by far potentially posed a threat to food security globally especially where 

epidemics are reported due to the heavy crop losses (Ravelomanantsoa et al., 2018). The 
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pathogen is known to affect food crops causing lethal wilting in more than 200 plant species 

(Denny, 2006) with more than 450 plant species reported to be host plants (Hayward, 1991).  

 

Fig 1: Map showing distribution of Bacteria wilt in Africa 

R. solanacearum Classification, Pathogenicity and virulence 

Phenotypically, R. solanacearum has been historically divided into five races with regard to 

the particular species of plant they infect. It is further classified to six biovars depending on 

the pathogens ability to hydrolyze three sugar alcohols and three disaccharides (Fegan & 

Prior, 2005; Wicker et al., 2012). R. solanacearum being a soil borne, enters the plant 

through wounds or natural openings in the root elongation zone or at the location of 

developing lateral roots (Kurabachew & Wydra, 2013). The pathogen is highly tissue specific 

and multiplies rapidly in the xylem vessels thus clogging them resulting to disruption of 

smooth flow of water and eventual wilting and dying of the plant.  

Expression of pathogenicity in R. solanacearum is controlled by a complex regulatory 

network that is dependent upon environmental conditions, the presence of host cells, and 

bacterial cell population (Schell, 2000; Genin and Denny, 2012). High R. solanacearum 

density in the rhizosphere is one of the important factors triggering bacterial wilt disease 

epidemics coupled with suitable environmental conditions (Wei et al., 2011). Research has 

indicated positive correlation of amount of inoculum and disease prevalence (He et al., 2014). 

Moreover, the pathogen has been found to multiply severely in warm and humid environs (Li 

et al., 2016) with capacity to survive in the soil for lengthy periods even in absence of a 

susceptible pathogen. Further, biovar (bv) 2, has been reported to survive in low temperatures 

(Stevens, 2010). Pathogenicity tests can be done drenching the planting media with inoculum 

or injecting the test plants with a needle dipped in R. solanacearum bacterial culture. Another 

method is by injuring roots and soaking them in R. solanacearum inoculum then planting in 

sterile media. Controls can be drenched, soaked or injected with sterile water. Test plants 

should be kept at 28
˚
C to observe the witling symptoms. 
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The disease process complex involving several phases that are dependent on environmental 

conditions and physiological state of both the pathogen, and the host (Hayward, 1991).The 

success of the pathogen upon entry in the plant cells is dependent on the ability to overcome 

host defense mechanisms. Disease resistance comprises defense responses initiated to counter 

the pathogen avirulence factors. Detection of bacterial flagellin chitin, lipopolysaccharides, 

and peptidoglycans triggers plants defenses through recognition of Microbe/Pathogen-

associated molecular patterns (Sun et al., 2017; Jones and Dangl, 2006; Zipfel, 2009). R. 

solanacearum must overcome the host defense mechanisms to cause disease. The pathogen 

employs an intricate network that directs the expression of the various pathogenicity factors 

(Schell, 2000). Type‐III secretion system (T3SS) of R. solanacearum has a key function in 

virulence by enabling the pathogen invade the host. Some strains are reported to have more 

than 70 T3SS now designated Rips (Ralstonia‐injected proteins), (Peeters et al., 2013). 

Extracellular polysaccharide (EPS) is another key virulence factor of R. solanacearum. It is 

hypothesized that the role of EPS is physical obstruction of the flow of water in the xylem of  

infected plants or that EPS covers the bacterium thus preventing host plant recognition thus 

defense mechanisms are not initiated (Milling et al., 2011). 

Detection of R. solanacearum  

Detection of R. solanacearum is important for disease diagnosis and research. Several 

methods have been employed ranging from physical, biochemical and molecular. Isolation of 

the bacteria can be from soil, plant tissues and irrigation water. Initial detection can be done 

visually through looking out for symptoms of wilt in crop fields (Figure 2b). Vascular 

discoloration is also observed when a longitudinal cross section is done in infected plant 

stems (Figure 2c). Further tests are required to confirm presence of the pathogen. Bacterial 

streaming test (Fig 2a) is usually one of the initial tests carried out on suspected tissue 

samples (IPDN, 2014). The result is usually positive for plants having heavy infestation 

indicating a dirty cream ooze once a cross section of the stem is suspended in a beaker with 

clean water.  

  

Figure 2: (a) Streaming test, 

( b) Wilted tomato plant, (c) 

Damaged vascular tissues 

Figure 3: Plates showing avirulent (a) and virulent (b) strains 

of Ralstonia Solanacearum 

Further confirmatory tests need to be done on plant tissues. The samples are prepared by 

washing under running water and sterilizing them with 70% ethanol or 0.5% sodium 

hypochlorite for approximately 2 minutes. The tissues are then rinsed with sterile distilled 

water, isolated aseptically and cultured on selective media. Soil samples are suspended in 

water and then a sample drawn for serial dilution. The isolated suspensions are then 

inoculated in selective or semi-selective media. This media works by suppressing or 
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preventing growth undesirable microorganisms while allowing multiplication of the target 

microorganism. These media include Kelman's tetrazolium chloride medium (TZC), 

Casamino acid Peptone Glucose medium (Kelman, 1998) and Semi selective Media South 

Africa (Englebrecht, 1994). The results after incubating for 48 to 72 hours at 28-30 degrees 

Celsius are fluidal cream colonies with pink centers (Figure 3).   

Biovar determination is based on ability of the Ralstonia solanacearum strains to hydrolyze 

disaccharides (maltose, lactose, and cellobiose) and hexose alcohols (mannitol, sorbitol, and 

dulcitol). The protocol was described by Hayward 1991. The basal medium (NH4H2PO4 1.0 

g, KCl 0.2 g, MgSO4.7H2O 0.2 g, Difco bacto peptone 1.0 g, Agar 3.0 g, and Bromothymol 

blue 0.03 g per liter) containing 1% of each type of sugar. About 200 µl of the melted 

medium is dispensed into the wells of a microtitre plate. Bacteria inoculum suspension of 

Optical Density + 0.05 at 600nm is prepared in sterile distilled water from 2-day-old cultures. 

For the determination of biovars 20 μl of bacterial suspension is added in the microtiter plate 

and incubated at 28-32
0
C. The microtitre wells are examined 3-6days after inoculation for 

color change (Schaad et al., 2001). Oxidation results in production of an acid which changes 

the medium from green to yellow. Huang et al., (2011) enhanced the biovar test by using 

phenol red as a pH indicator that changes color at a higher pH when a carbohydrate is 

utilized. The colour changes from red to yellow upon oxidation. This method significantly 

reduces cost and time while improving efficiency.  

Serological methods such as enzyme linked immunosorbent assays (ELISA) and 

immunofluorescent (IF) antibody staining are utilized for large numbers of samples and are 

not very expensive.  However, these techniques are only effective with reasonably high 

bacterial population exceeds 10
4
 cfu/g soil(Pradhanang et al., 2000; Arslan et al., 2014).  

Molecular techniques are credited for good understanding of R. solanacearum (She et al., 

2017). DNA-based means including PCR or real-time PCR using specific primers (Fegan et 

al., 1998) have been very important. Polymerase chain reaction (PCR) due to being highly 

sensitive and specific has been used in quantification of R. solanacearum in soil (Inoue & 

Nakaho, 2014). Sequence analysis has been employed in classification of the pathogen into 

Division I and Division II through Restriction fragment length polymorphism (RFLPs) on the 

hrp gene region and 16S rRNA (Cook et al., 1994; Poussier and Luisetti, 2000). Further, Two 

more groups of strains were identified by fingerprinting analyses using amplified fragment 

length polymorphism (AFLP) and polymerase chain reaction RFLP (PCR-RFLP) techniques 

on targeting the HRP cluster gene and 16S rRNA gene (Poussier et al., 2000a) intergenic 

spacer region (ITS) between the 16S and 23S rRNA genes, and endoglucanase and hrpB 

genes (Fegan et al., 1998; Poussier et al., 2000b). 

African Nightshade 

African Indigenous Vegetables offer the most affordable source of macro and micronutrients 

in Kenya and are a rich source of important vitamins such as A, B, and C, and minerals 

including calcium, iron, and potassium (Uusiku et al., 2010). Initially, they were considered 

food for the rural poor but their benefits have led to promotion of their utilization (Kebede 

and Bokelmann, 2017).They contribute to reducing micronutrient deficiencies, responsible 

for “hidden hunger”, a major hindrance to the current food security status  (FAO, 2010). A 

healthy population is necessary for contribution to economic growth. However, according to 

Keatinge et al., (2011) increasing lack of vegetable consumption worldwide has been the 

cause of serious deterioration of human health and resulting to hampering attainment of the 

Sustainable Development Goals (SDGs). This is most importantly felt in Sub Saharan Africa 

where malnutrition due to minimal or no consumption of fruits and vegetables is rampant. 
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African Indigenous vegetables offer vital supplements to diets which are mostly heavy in 

staples. 

African Nightshades have increasingly become important for commercial purposes in Kenya 

over the recent past with many markets and groceries across the country having them as a 

major vegetable for sale (Mwaura et al., 2013). It was estimated that in central Kenya, about 

9000 tonnes of nightshades and other indigenous vegetables were sold in formal and informal 

markets between 2008 and 2010 (AVRDC, 2010). This gives an indication of their 

importance with capacity to support rural, peri-urban and urban populations for income 

generation. Nightshade cultivation attracts many farmers because they do not require heavy 

capital investments and can be intercropped with other crops (DFID and R4D, 2010). 

Furthermore, nightshades are one of the significant African Indigenous Vegetables (AIV) that 

are important for gender empowerment. Women are majorly involved in all aspects of the 

many farm produce supply chains (Weinberger et al., 2011). 

African nightshades despite their importance have a major challenge, the bacterial wilt 

caused by Ralstonia solanacearum. Nightshades belong to the Solanaceae family together 

with a wide host range of many other economically important crops also affected by the 

pathogen such as potato, tomato, eggplants, pepper and tobacco (Elphinstone, 2005). The 

aggressiveness of the disease is dependent on various biotic and abiotic factors including 

susceptibility of the host, temperature, moisture and root wounding (Ishihara et al., 2012; 

Jacobs et al., 2012; Wei et al., 2015). 

Bacterial wilt affecting African Nightshade in Kenya 

Methodology 

A survey was done during the short rains season September to December 2016 in Central 

(Gitaru, Kerugoya and sabasaba), Western (Kanduyi and Mayanja) and Rift valley 

(Kipkaren) regions of Kenya. The aim was to determine the importance as well as major 

constraints in production of African Nightshade. A structured questionnaire used to get 

information on African nightshade production practices, the production challenges, presence 

of bacterial wilt and management practices carried out. Farm Assessment was done to 

determine of disease incidence in the farms. (Scale: 1-BW present in farm, 0-BW absent in 

farm). Initial diagnosis was done using the bacterial streaming test. Soil and tissue samples 

were collected in bags sealed and labelled for laboratory isolations to confirm pathogen 

presence. 

RESULTS  

The survey indicated that germplasm of African nightshades cultivated in the surveyed areas 

were classified as either the broad-leafed or narrow-leafed. The broad leafed was more 

preferred by many farmers though they said the narrow leafed fetch better prices in the 

market.  African nightshades ranked high in importance among other local and exotic 

vegetables. Among the constraints affecting African Nightshade production pests and 

diseases ranked the highest (Graph 1).  
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Graph 1: Constraints affecting production of African nightshade in selected parts of Kenya 

 

Figure 4: Wilted African nightshade plants. 

Bacterial wilt was observed in the survey areas (Figure 4). Among the various study areas, 

farms Kipkaren in Rift valley region indicated the highest disease incidences (Table 1). 

Table 1. Bacterial wilt disease incidence in study areas 

Survey Area Nightshade Potato Tomato Other 

Gitaru 0.10±0.19
a
 0.70±0.19

b
 0.30±0.19

a
 0.20±0.19

a
 

Mayenje 0.40±0.19
b
 - 0.20±0.19

a
 - 

Kanduyi 0.30±0.19
ab

 - 0.10±0.19
a
 - 

Kipkaren 0.50±0.19
b
 - 0.20±0.19

a
 - 

Kerugoya 0.10±0.19
a
 0.50±0.19

ab
 0.80±0.19

b
 0.30±0.19

a
 

Sabasaba 0.10±0.19
a
 0.40±0.19

a
 0.20±0.19

a
 - 

P 0.144 0.703 0.006 0.409 
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Data are the mean ± standard error (SE). Means separated using LSD test, means within the 

column followed by the same letter are not significantly different at P<0.05. (-) indicates the 

crop is not grown in the farms surveyed. Other includes crops susceptible to R. solanacearum 

Control Methods 

Managing R. solanacearum has been difficult due to the diversity and complexity of the 

pathogen. This is especially because of its capacity to grow latently, survive in deep soil 

layers for long periods, mobility in water ways, and having weeds as alternate hosts (Wang 

and Lin, 2005). No single management practice thus far has shown satisfactory result in 

locations where the disease is endemic. However, most researchers have shown the option of 

reducing the populations of R. solanacearum being most viable. This includes controlling 

bacterial wilt using various methods, such as the use of biocontrol agents with strong 

inhibition against R. solanacearum (Tan et al., 2013; Yuan et al., 2014), the application of 

compost (Schonfeld et al., 2003), and changing the soil pH (Niwa et al., 2007; Wu et al., 

2014). 

Chemical Control 

Globally, disease control has been based on commercial Pesticides. Use of chemical 

bactericides is one of the traditional methods of disease control. However, this method is not 

popular due to association with environmental pollution and adverse effects that they have on 

the environment (Fujiwara et al., 2011; Tan et al., 2015). In management of bacterial wilt, 

pesticides such as algicide (3-[3-indolyl] butanoic acid), fumigants (metam sodium, 1,3-

dichloropropene, and chloropicrin) have been used.  Enfinger et al., (1979) found that 

Chloropicrin was effective in reducing populations of R. solanacearum. However, use of 

chloropicrin is regulated due to its toxic and carcinogenic properties. In the past, Methyl 

bromide was commonly used as a fumigant (Champoiseau et al., 2010) but has been banned 

in many countries. Antibiotics have been used to manage crops against pathogenic bacteria 

such as Xanthomonas, Pseudomonas and Erwinia (McManus et al., 2001). Action of 

Streptomycin and tetracycline antibiotics is through inhibiting protein synthesis. 

Streptomycin causes irreversible binding to bacterial ribosomes whereas Tetracyclines bind 

reversibly to bacterial ribosomes (McManus et al., 2001). Antibiotic sprays were used 

extensively over the years but many pathogen populations have developed resistance 

resulting to decline in their use (Sundin et al., 2016). 

Cultural practices 

These include practices like crop rotation, polyculture, sanitation, manipulation of planting 

dates among others. These play a key role in disease management (Palti, 1981). Crop rotation 

helps in managing crop diseases through reducing pathogen population especially of soil 

borne pathogens (Janvier, 2007). Rouging of diseased plants also help in managing disease 

epidemics. Burning of crop residues is also eradicates pathogens in the host crop. Sanitation 

is also important in managing crop diseases through eliminating undesirable crops that can 

act as alternate hosts. The measures are usually economically feasible. However, control 

achieved via cultural practices is often inadequate and need to be supplemented with other 

methods.  

Soil amendment 

Application of organic and inorganic fertilizers has been known to effectively suppress 

activity of the bacterial wilt pathogen. Fine biochar has been found to significantly decrease 

bacterial wilt incidence. NPK fertilizer was found to reduce bacterial wilt and increase yield 

(Lemaga et al., 2005). This was successful due to the ability of biochar ability to adsorb to the 
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pathogen directly and indirectly via adsorption of root exudates thus interfering with 

pathogen chemotaxis (Gu et al., 2017). Calcium (Ca) fertilizer has been shown to effectively 

reduce bacterial wilt incidence and severity. Increased concentration of Ca in the stems of 

tomato plants significantly reduced the population of R. solanacearum (Yamazaki et al., 

2000). Further, increase in concentration of Ca ions significantly decreased pectinase activity 

of R. solanacearum (He et al., 2014) thus making it difficult for the pathogen to degrade the 

cell wall and gain entry into the plant. A combined amendment of rock dust and commercial 

organic fertilizer significantly reduced the incidence of bacterial wilt in the tomato (Li and 

Dong 2013). High soil pH and Ca were important factors in management of bacterial wilt by 

the rock dust amendment. 

Biological control 

Use of Biological control agents (BCAs) and organic matter is on the increase due to the 

issues associated with use of chemicals. The modes of action of BCAs are characterized by 

various interactions, such as the competition for nutrients and space, antibiosis, parasitism, 

and induced systemic resistance (Yuliar et al., 2015). However, the performance of BCAs is 

hindered by some difficulties, which are associated with the production, storage, and 

subsequent application of BCAs (Singh et al., 2015; Yuliar et al., 2015). Ability to effectively 

colonize and survive in the rhizosphere is a condition for strains of antagonistic 

microorganisms to suppress soilborne diseases (Yuan et al., 2014). Organic fertilizers have 

been found to supply adequate energy and nutrients for antagonists to improve the 

suppressive capacity towards pathogens (Sullivan, 2001). Bioorganic fertilizers alter the soils 

physicochemical and biological properties (Liu et al., 2015) thus improving suppressive 

capacity of the soil towards bacterial wilt. Many previous studies reported that bacterial wilt 

was suppressed by organic matter. To suppress bacterial wilt, plant residues (80%) such as 

fresh plant materials, plant extracts, isolated compounds, and essential oils, have been most 

commonly used, followed by animal wastes (10%), and simple organic compounds (10%) 

(Yuliar et al., 2015). Plants contain abundant bioactive materials, such as secondary 

metabolites, volatile oils, and essential oils that can be exploited to develop new biopesticides 

(Bhagat et al., 2014). In the development of novel pesticides, secondary metabolites could be 

used as lead compounds as they have novel modes of action (Bourgaud et al., 2001; Dubey et 

al., 2011). The possible mechanism of action of plant residues primarily includes 

antimicrobial activities. The  plant residues also suppress pathogens indirectly by improving 

the physical, chemical, and biological soil properties. Presently, only a few isolated 

compounds have been used to control tomato bacterial wilt in planta or in field conditions (Li 

et al., 2016). 

Resistance 

Host resistance is considered a useful option for managing bacterial wilt since it is the most 

environment friendly and effective method to control bacterial wilt. Resistance in many 

solanaceous plants is quantitative due to many genes contributing to minimal resistance 

(Thoquet et al., 1996). This results to resistance being strongly influenced by environmental 

conditions such as soil temperature, pH, and moisture. In Arabidopsis, resistance is governed 

by a major gene RRS1-R. Several QTLs for resistance to R. solanacearum have been 

mapped, Bwr-12, effective against phylotype I (Asian) strains is located in a 2.8-cM interval 

of chromosome 12, was found to be responsible for 18–56 % of the total resistance (Wang et 

al., 2013).  

Breeding for resistance is a complex process dictated by factors such as the availability and 

diversity of resistance sources, agronomic qualities, variability of the pathogenic strains and 
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plant-pathogen interactions (Elphinstone, 2005; Boshou, 2005). Additionally resistance being 

quantitative, it is typically strain specific, and the diversity of pathogenic strains of 

R.solanacearum has led to the development of resistant lines that are not durable over diverse 

geographic regions. Another issue that has been problematic for tomato breeders is that small 

fruit size is linked to resistance to bacterial wilt. Resistant plants according to Prior et al. 

(1996) showed heavy infestation by R. solanacearum but without visible symptoms. 

Additionally, Nakaho et al. (2004) indicated suppressed multiplication of bacteria as a result 

of restricted pathogen movement within the xylem tissues.  However more effort in breeding 

is necessary because resistance to bacterial wilt in many crops has generally been negatively 

correlated with yield and quality. 

Induced resistance focuses on increasing capacity of the cell wall to impart resistance against 

pathogens.  Silicon is considered to be a beneficial element for plants and higher animals 

(Epstein, 1999). Kiirika et al. (2013) reported that the combined application of silicon and 

chitosan reduced the incidence of bacterial wilt in the tomato by inducing resistance. Strains 

of specific plant growth promoting rhizobacteria such as Pseudomonas fluorescens have been 

shown to differentially suppress diseases by induced systemic resistance (Ran et al., 2005). 

Additionally, plant activators including validamycin A and validoxylamine have been known 

to induce systemic resistance on tomatoes (Pradhanang et al., 2005; Yuliar et al., 2015). 

Recently, Silicon has been determined to enhance resistance of crops thus aid in managing 

several pests and diseases in various plant species. Additionally, silicon assists in various 

abiotic stresses including salt stress, nutrient imbalance, high temperature, freezing among 

others (Ma J.F., 2004). Silicon acts as a modulator influencing plant defense responses and 

interacting with key components of plant stress signaling systems leading to induced 

resistance. Silicon and chitosan have been confirmed to induce resistance to tomato against 

bacterial wilt (Kiirika et al., 2013).  

Genetic engineering 

This provides an opportunity to salvage crops that are important in food security from 

virulent disease epidemics. Further, it can reduce crop producers’ dependence on chemicals. 

Successful research has been done for example, the Arabidopsis NPR1 (non-expresser of PR 

genes) gene was introduced into a tomato cultivar. The research found that wilt incidence was 

reduced by 70% (Lin et al., 2004). Strategies adopted in Genetic engineering include; 

Improving host recognition mechanisms as a result of infection, mining R genes, advancing 

host defense pathways, disarming hosts susceptibility genes, silencing pathogen virulent 

genes and gene editing (Vincelli, 2016) among others.  

RECOMMENDATIONS 

The pathogen R. solanacearum on African nightshade needs to be studied in depth due to its 

capacity to cause disease epidemics.  Molecular studies are important in assessing 

interactions of the pathogen in African nightshades. Induced resistance is a promising method 

in management of bacterial wilt however further research is needed to determine 

effectiveness in varying weather conditions. This will form a basis for improving 

management of bacterial wilt epidemics.  
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